Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
BMJ Glob Health ; 7(5)2022 05.
Article in English | MEDLINE | ID: covidwho-1865161

ABSTRACT

INTRODUCTION: The infection fatality rate (IFR) of COVID-19 has been carefully measured and analysed in high-income countries, whereas there has been no systematic analysis of age-specific seroprevalence or IFR for developing countries. METHODS: We systematically reviewed the literature to identify all COVID-19 serology studies in developing countries that were conducted using representative samples collected by February 2021. For each of the antibody assays used in these serology studies, we identified data on assay characteristics, including the extent of seroreversion over time. We analysed the serology data using a Bayesian model that incorporates conventional sampling uncertainty as well as uncertainties about assay sensitivity and specificity. We then calculated IFRs using individual case reports or aggregated public health updates, including age-specific estimates whenever feasible. RESULTS: In most locations in developing countries, seroprevalence among older adults was similar to that of younger age cohorts, underscoring the limited capacity that these nations have to protect older age groups.Age-specific IFRs were roughly 2 times higher than in high-income countries. The median value of the population IFR was about 0.5%, similar to that of high-income countries, because disparities in healthcare access were roughly offset by differences in population age structure. CONCLUSION: The burden of COVID-19 is far higher in developing countries than in high-income countries, reflecting a combination of elevated transmission to middle-aged and older adults as well as limited access to adequate healthcare. These results underscore the critical need to ensure medical equity to populations in developing countries through provision of vaccine doses and effective medications.


Subject(s)
COVID-19 , Developing Countries , Aged , Bayes Theorem , COVID-19/epidemiology , Health Services Accessibility , Humans , Middle Aged , Public Policy , Seroepidemiologic Studies
2.
National Bureau of Economic Research Working Paper Series ; No. 27532, 2020.
Article in English | NBER | ID: grc-748170

ABSTRACT

Managing the outbreak of COVID-19 in India constitutes an unprecedented health emergency in one of the largest and most diverse nations in the world. On May 4, 2020, India started the process of releasing its population from a national lockdown during which extreme social distancing was implemented. We describe and simulate an adaptive control approach to exit this situation, while maintaining the epidemic under control. Adaptive control is a flexible counter-cyclical policy approach, whereby different areas release from lockdown in potentially different gradual ways, dependent on the local progression of the dis- ease. Because of these features, adaptive control requires the ability to decrease or increase social distancing in response to observed and projected dynamics of the disease outbreak. We show via simulation of a stochastic Susceptible-Infected-Recovered (SIR) model and of a synthetic intervention (SI) model that adaptive control performs at least as well as immediate and full release from lockdown starting May 4 and as full release from lockdown after a month (i.e., after May 31). The key insight is that adaptive response provides the option to increase or decrease socioeconomic activity depending on how it affects disease progression and this freedom allows it to do at least as well as most other policy alternatives. We also discuss the central challenge to any nuanced release policy, including adaptive control, specifically learning how specific policies translate into changes in contact rates and thus COVID-19's reproductive rate in real time.

SELECTION OF CITATIONS
SEARCH DETAIL